Controlled synthesis of core-shell iron-silica nanoparticles and their magneto-dielectric properties in polymer composites.
نویسندگان
چکیده
Low loss core-shell iron-silica nanocomposites with improved magneto-dielectric properties at radio frequencies (1 MHz-1 GHz) were successfully fabricated. A new simple method was developed to synthesize metallic iron (Fe) nanoparticles with uniform size distribution in an aqueous environment at room temperature. Citric acid and oleic acid served as surface-capping agents to control the particle size of the synthesized Fe nanoparticles. Smaller Fe nanoparticles with narrower particle size distribution were obtained as the concentration ratio of iron ions to carboxylic acid groups decreased. The Fe nanoparticles were subsequently coated with silica (SiO(2)) layers to prevent the iron cores oxidizing. Polymer composites were prepared by incorporating Fe@SiO(2) nanoparticles with polydimethylsiloxane (PDMS) elastomers. Experimental results showed that the dielectric permittivity (ε) and magnetic permeability (μ) of the polymer composite increased with increasing amount of Fe@SiO(2) nanoparticle doping. The dielectric loss (tanδ) was near 0.020 at a frequency of 1 GHz.
منابع مشابه
Magneto-dielectric properties of polymer– Fe3O4 nanocomposites
The aim of this research is to elucidate the size effect of magnetic nanoparticles on the resultant magneto-dielectric properties of polymer nanocomposites at radio frequencies. The block copolymer of [styrene-b-ethylene/butylene-b-styrene] (SEBS) was utilized as a matrix for the templating of magnetic nanoparticles. Surfactant-modified iron oxide (Fe3O4) nanoparticles of various sizes were suc...
متن کاملGradual Growth of Gold Nanoseeds on Silica for Silica@Gold Core-Shell Nanoparticles and Investigation of Optical Properties
Metal nanoshells consists of a dielectric core surrounded by a thin noble metal shell, possess unique optical properties that render nanoshells attractive for use in different technologies. This paper reports a facile method for growth of small gold nanoparticles on the functionalized surface of larger silica nanoparticles. Mono-dispersed silica particles and gold nanoparticles were prepared by...
متن کاملAn Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application
In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...
متن کاملGradual Growth of Gold Nanoseeds on Silica for Silica@Gold Core-Shell Nanoparticles and Investigation of Optical Properties
Metal nanoshells consists of a dielectric core surrounded by a thin noble metal shell, possess unique optical properties that render nanoshells attractive for use in different technologies. This paper reports a facile method for growth of small gold nanoparticles on the functionalized surface of larger silica nanoparticles. Mono-dispersed silica particles and gold nanoparticles were prepared by...
متن کاملAn Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application
In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 22 10 شماره
صفحات -
تاریخ انتشار 2011